

SR/186/2025

IN THE MATTER OF PROCEEDINGS BROUGHT BY THE INTERNATIONAL TENNIS INTEGRITY AGENCY UNDER THE TENNIS ANTI-DOPING PROGRAMME 2024

Before:	
The Rt Hon Sir Gary Hickinbottom (Chair) Lucy Martinez Professor Dorian Haskard	
BETWEEN:	
International Tennis Integrity Agency	Anti-Doping Organisation
and	
Aleksei Mokrov	Respondent
DECISION OF THE INDEPENDENT PA	ANEL

I. Introduction

1. The International Tennis Federation (the "ITF") is a signatory to the World Anti-Doping Association ("WADA") Code (the "Code"), and responsible for implementing the mandatory provisions of that Code in the field of international tennis which it does through the Tennis Anti-Doping Programme (the "TADP": the relevant TADP in this case is the TADP 2024, and all references are to that version). The TADP states that it is intended to implement the Code, and expressly to be interpreted and applied accordingly (Articles

THE INDEPENDENT EXPERTS

- 1.1.3 and 1.1.4 of the TADP). References to a specific Article in this Decision are to the TADP unless otherwise indicated.
- 2. The ITF has delegated all aspects of doping control within its scope to the International Tennis Integrity Agency (the "ITIA") (Article 1.1.7). As such, the ITIA investigates possible violations of the TADP and, where appropriate, brings charges before an Independent Tribunal for adjudication.
- 3. Mr Aleksei Mokrov, (the "**Respondent**"), is a professional tennis player from St. Petersburg, the Russian Federation ("Russia"), who was at the relevant time 19 years of age and ranked 1,404 in the ATP Men's Singles Rankings. It is common ground that the Respondent is subject to and bound by the terms of the TADP.
- 4. Hereafter, the ITIA and the Respondent are referred collectively as the "Parties".
- 5. The Parties accept that this Panel has jurisdiction to adjudicate upon the Charge in this case, under Article 8.1.1 of the TADP.

II. Factual Background

- 6. On 26 November 2024, while the Respondent was competing in the ITF World Tennis Tour M15 event at Sharm El Sheikh, Egypt (in respect of which the ITIA was the responsible doping control authority), an In-Competition urine sample was collected from him with sample number 1458019 (the "Sample"). In accordance with the standard process, the Sample was split into A and B bottles (the "A Sample" and the "B Sample" and collectively the "Samples") sealed by him.
- 7. The A and B Samples were transported to the WADA-accredited Laboratoire de contrôle du dopage located at the INRS Centre Armand-Frappier Santé Biotechnologie in Montreal, Canada (the "Montreal Laboratory") for testing, arriving on 2 December 2024.
- 8. The initial testing procedure of the A Sample identified two (2) urinary metabolites of nandrolone (19-nortestoterone), namely 19-norandrosterone ("19-NA") and 19-noretiocholanolone ("19-NE"). Both are anabolic agents and Prohibited Substances

- classified as a non-Specified Substance under S1.1 (Anabolic Androgenic Steroids) of WADA's Prohibited List 2024. As such, they are prohibited at all times and at all levels. 19-NA was found at a level of approximately 1.9 ng/mL, and 19-NE at level that was below reportable level but the ratio of 19-NA to 19-NE was greater than three (3).
- 9. In accordance with paragraph three (3) of WADA Technical Document TD2021NA, "Harmonization of Analysis and Reporting of 19-Norsteroids related to Nandrolone", the Montreal Laboratory carried out confirmation procedures on the A Sample using Gas Chromatography/Combustion/Isotope Ratio Mass Spectrometry ("GC/C/IRMS") and Gas Chromatography-Mass Spectrometry ("GC-MS") which confirmed an Adverse Analytical Finding ("AAF"), in that the A Sample was shown to contain 19-NA at a level of approximately 1.8 ng/mL, the origin of which was exogenous. In Appendix One of the TADP, "Adverse Analytical Finding" is defined as: "A report from a WADA-accredited laboratory or other WADA-approved laboratory that, consistent with the [WADA International Standards for Laboratories ("ISL")], establishes in a Sample the presence of a Prohibited Substance or any of its Metabolites or Markers or evidence of the Use of a Prohibited Method".
- 10. The test report and results of analysis of the A Sample were submitted to the Independent Review Board in accordance with Article 7.4 of the TADP. The Board found that:
 - (i) the Respondent did not have a Therapeutic Use Exemption ("TUE") for nandrolone, and was not entitled to make an application for a retrospective TUE (it has not been suggested that the Respondent has any relevant TUE, and we need not refer to such exemptions further);
 - (ii) there was no evidence that the AAF was caused by the ingestion of the 19-NA through any permitted route; and
 - (iii) in the production of the test result, there was no apparent departure from the ISL or for the WADA International Standards for Testing and Investigations.
- 11. On 27 January 2025, the ITIA notified the Respondent of the AAF, and informed him of his rights under the ISL to witness the opening and analysis of the B Sample. That day, the Respondent was also Provisionally Suspended.

- 12. On 11 February 2025, the B Sample was opened and analysed at the Montreal Laboratory. The Respondent and two (2) witnesses chosen by him attended the opening via video link. Further, an independent observer appointed by the ITIA attended the Montreal Laboratory for the opening, aliquoting and resealing of the B Sample. The analysis of the B Sample confirmed the presence of exogenous 19-NA at a level of about 1.8 ng/mL.
- 13. On 18 April 2025, the Respondent submitted his response to the AAF. He disputed the reliability of the test analysis and, in support, filed an expert report prepared by Dr Ilya Podolskiy which identified several alleged departures from the ISL which, it was contended, could have affected the result and caused the AAF. It was also submitted that the Respondent had no motive to use nandrolone which (it was said) is largely obsolete, unattractive because of its long detection window and its criminal status in Russia, and generally unsuitable for use by tennis players, such that intentional Use would be "irrational and highly unlikely".
- 14. On 13 May 2025, the ITIA charged the Respondent with the commission of an Anti-Doping Rule Violation ("ADRV") under Articles 2.1 and/or 2.2 of the TADP (the "Charge"), on the basis that nandrolone was found to be present in the urine Sample that the Respondent provided In-Competition on 26 November 2024 (see paragraphs 22–24 below)
- 15. On 14 May 2025, the Respondent contested the Charge for the reasons set out in his letter of 18 April 2025 and Dr Podolskiy's Report; and he requested a hearing before an Independent Tribunal in accordance with Article 8.2 of the TADP.
- 16. On 28 May 2025, the matter was referred to the Independent Panel to appoint an Independent Tribunal. On 19 June 2025, Sir Gary Hickinbottom was appointed Chair; and, on 7 July 2025, Ms Lucy Martinez and Professor Dorian Haskard were also appointed members of the Independent Tribunal.
- 17. On 4 July 2025, the Chair issued procedural directions, which were modified as agreed between the parties on 6 August 2025. In accordance with those directions, the ITIA filed its brief on 13 August 2025; the Respondent filed his brief on 12 September 2025; and the ITIA its reply on 6 October 2025.

- 18. The hearing took place on 16 October 2025 by remote video conference. Ms Louise Reilly SC and Mr Robert Kerslake, Attorneys-at-Law at Kellerhals Carrard, instructed by Mr Ben Rutherford (ITIA Senior Director, Legal) and Ms Katy Stirling (Legal Counsel, ITIA), appeared for the ITIA. Ms Anna Antseliovich and Mr Artem Patsev, Legal Counsel at Clever Consult Legal Group, appeared for the Respondent. We thank all the legal representatives for their assistance.
- 19. In addition to legal submissions, we had written evidence from, and oral evidence in the form of a single expert witness conference ("hot-tubbing") session involving, the following expert witnesses:
 - (i) Professor Jean-François Naud and Dr Andrew Barber of the Montreal Laboratory instructed by the ITIA, who provided two (2) reports dated 5 August 2025 (their "First Report") and 6 October 2025 (their "Second Report").
 - (ii) Dr Vinod Nair of the Sports Medicine Research and Testing Laboratory, Utah instructed on behalf of ITIA, who provided two (2) reports dated 6 August 2025 (his "First Report") and 6 October 2025 (his "Second Report").
 - (iii) Dr Ilya Podolskiy instructed by the Respondent, who provided two (2) reports dated 23 March 2025 (his "First Report") and 7 September 2025 (his "Second Report").

20. Further:

- (i) We had the benefit of a hearing bundle of relevant evidence, including the written evidence from a further expert witness, Dr Emmanuel Strahm, instructed by the Respondent, who provided one (1) report dated 12 September 2025.
- (ii) At the hearing, the Respondent gave an oral statement in which, amongst other things, he stated he had not taken any Prohibited Substance.
- 21. As well as the advocates/Counsel and witnesses described above, Ms Freya Pock of Sport Resolutions (Secretariat to the Independent Tribunal) was also present at the hearing.

III. The Charge: Applicable Rules, Regulations and Standards

- 22. The Respondent is charged with Presence and/or Use of nandrolone in the urine Sample he supplied on 26 November 2024, in violation of Articles 2.1 and/or 2.2 of the TADP.
- 23. Article 2 of the TADP provides, so far as material:

"Doping is defined as the occurrence of one or more of the following (each, an **Anti-Doping Rule Violation**):

- 2.1 The presence of a Prohibited Substance or any of its Metabolites or Markers in a Player's Sample, unless the Player establishes that such presence is consistent with a TUE granted in accordance with Article 4.4
 - 2.1.1 It is each Player's personal duty to ensure that no Prohibited Substance enters their body. Players are responsible for any Prohibited Substance or any of its Metabolites or Markers found to be present in their Samples. Accordingly, it is not necessary to demonstrate intent, Fault, Negligence, or knowing Use on the Player's part in order to establish an Article 2.1 Anti-Doping Rule Violation; nor is the Player's lack of intent, Fault, Negligence or knowledge a defence to an assertion that an Article 2.1 Anti-Doping Rule Violation has been committed.
 - 2.1.2 Sufficient proof of an Anti-Doping Rule Violation under Article 2.1 is established by any of the following: (a)[...]; (b) where analysis of the Player's B sample confirms the presence of the Prohibited Substance or its Metabolites or Markers found in the Player's A Sample [...].
 - 2.1.3 Excepting those substances for which a Decision Limit is specifically identified in the Prohibited List or a Technical Document, the presence of any reported quantity of a Prohibited Substance or its Metabolites or Markers in a Player's Sample constitutes an Anti-Doping Rule Violation under Article 2.1 [...].

- 2.2 Use or Attempted Use by a Player of a Prohibited Substance or a Prohibited Method, unless the Player establishes that such Use or Attempted Use is consistent with a TUE granted in accordance with Article 4.4.
 - 2.2.1 It is each Player's personal duty to ensure that no Prohibited Substance enters their body [...]. Accordingly, it is not necessary to demonstrate intent, Fault, Negligence, or knowing Use on the Player's part in order to establish an Anti-Doping Rule Violation for Use of a Prohibited Substance [...] under Article 2.2; nor is the Player's lack of intent, Fault, Negligence or knowledge a defence to a charge that an Anti-Doping Rule Violation of Use has been committed under Article 2.2.
 - 2.2.2 [...]
 - 2.2.3 The success or failure of the Use [...] of a Prohibited Substance [...] is not material. For an Article 2.2 Anti-Doping Rule Violation to be committed, it is sufficient that the Player Used [...] the Prohibited Substance [...]".
- 24. Proof of doping is dealt with in Article 3:

"3.1 Burdens and standards of proof

- 3.1.1 The ITIA will have the burden of establishing that an Anti-Doping Rule Violation has occurred. The standard of proof will be whether the ITIA has established the commission of the Anti-Doping Rule Violation to the comfortable satisfaction of the hearing panel, bearing in mind the seriousness of the allegation that is made. This standard of proof in all cases is greater than a mere balance of probability but less than proof beyond a reasonable doubt.
- 3.1.2 Where this Programme places the burden of proof on the Player [...] to rebut a presumption or establish specified facts or circumstances, then [...] the standard of proof will be by a balance of probability.

3.2 Methods of establishing facts and presumptions

The following rules of proof apply in doping cases:

- 3.2.1 Facts related to Anti-Doping Rule Violations may be established by any reliable means, including admissions.
- 3.2.2 Analytical methods [...] that have been approved by WADA after consultation within the relevant scientific community or that have been the subject of peer review will be presumed to be scientifically valid. Any Player [...] seeking to challenge whether the conditions for such presumption have been met or to rebut the presumption must (as a condition precedent to any such challenge) first notify WADA and explain the basis for their position [...].
- 3.2.3 Compliance with an International Standard (as opposed to an alternative standard, practice or procedure) will be sufficient to conclude that the procedures addressed by the International Standard were performed properly.
- 3.2.4 WADA-accredited laboratories [...] are presumed to have conducted Sample analysis and custodial procedures in compliance with the ISL. The Player [...] asserted to have committed an Anti-Doping Rule Violation may rebut this presumption by establishing that a departure from the ISL occurred that could reasonably have caused the Adverse Analytical Finding (or the factual basis for any other Anti-Doping Rule Violation asserted). Where the presumption is rebutted, the ITIA will have the burden of establishing that such departure did not cause the Adverse Analytical Finding (or the factual basis for such other Anti-Doping Rule Violation)."
- 25. Therefore, so far as particularly relevant to this case:
 - (i) The ITIA has the burden of establishing that an ADRV has occurred; and the standard of proof is to establish that to the "comfortable satisfaction of the hearing panel, bearing in mind the seriousness of the allegation made". This standard of proof "is greater than a mere balance of probability but less than proof beyond a

- reasonable doubt" (Article 3.1.1). In this context, we accept that the Charge against the Respondent (which has a potential sanction of a four-year ban from tennis) involve serious allegations with potentially serious consequences for the player charged if proved.
- (ii) Violation of Article 2.1 (Presence) is a matter of strict liability, with no proof of intent, fault, negligence or knowing use of the Prohibited Substance by the relevant player required. To sustain a charge, the ITIA need only prove that a sample provided by the player had present in it a Prohibited Substance (or any of its metabolites or markers). In particular, the ITIA does not have to prove the source of the Prohibited Substance. The violation may be established by "any reliable means".
- (iii) Violation of Article 2.2 ("*Use*") is subject to the same, strict liability regime, with "*Use*" being very widely defined to include "*utilization*, *application*, *ingestion*, *injection*, *or consumption by any means whatsoever*".
- (iv) To prove the ADRV in this case, the ITIA rely on (a) the undisputed fact that the Sample was provided by the Respondent In-Competition on 26 November 2024, and (b) the AAF reported by the Montreal Laboratory in respect of the A Sample as confirmed by analysis of the B Sample, which showed that 19-NA of exogenous origin was present in the Sample and therefore the Respondent must have "Used" 19-NA (or one of its precursors) prior to the sample collection. The Charge is dependent upon the AAF, which is itself dependent upon the validity and reliability of the analysis by the Montreal Laboratory on the Sample. In support, the ITIA rely on the presumption in Article 3.2.4 that the Montreal Laboratory, as WADA-accredited, conducted the sample analysis and custodial procedures in compliance with the ISL.
- 26. The Respondent contends that the analytical results relied on by the ITIA for the presence of 19-NA in the Sample are not reliable because the analysis involved departures from the ISL including WADA Technical Document TD2021NA ("TD2021NA", which, by virtue of Article 1.1.2 of the ISL, is effectively a part of the ISL) and ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories ("ISO 17025") (requirements which are also effectively incorporated into the ISL). He therefore seeks to

- rebut the Article 3.2.4 presumption by establishing, on the balance of probabilities, that (i) one or more departures from the ISL occurred; and (ii) that that departure (or those departures) could reasonably have caused the AAF upon which the Charge is based. There was, thus, no violation or breach upon which the ITIA could rely.
- 27. In reply, the ITIA submits that there were no departures from the requirements of the ISL; and, in any event, insofar as there were any departures, none could reasonably have caused the AAF. By reference to WADA v Chernova CAS 2013/A/3112 at [85], it stresses the need for the Respondent to establish, on the balance of probabilities, that (i) there is a specific (not hypothetical) departure from the ISL; and (ii) such departure could have reasonably, and thus credibly, caused a misreading of the analysis. The Respondent, it is submitted, cannot satisfy that burden; he therefore cannot rebut the Article 3.2.4 presumption; the analytical results relied on by the ITIA for the presence of 19-NA in the Sample are therefore valid and reliable; and, on that basis, the ADRV is proved.
- 28. The key issue at the oral hearing in relation to breach was consequently whether the Respondent was able to prove that, in the analysis performed by the Montreal Laboratory, one or more departures from the ISL occurred which could reasonably have caused the AAF.

IV. The Analysis of the Samples

- 29. As indicated above, the initial testing procedure of the Respondent's A Sample identified 19-NA at a level of 1.9 ng/mL, giving a Presumptive Adverse Analytical Finding. Two (2) complementary confirmation procedures were performed by the Montreal Laboratory.
- 30. The first procedure was GC/C/IRMS which identifies the origin of the target compound, either exogenous or endogenous. The carbon isotope ratios ("δ¹³C") of endogenous and exogenous compounds are different; and, by comparing the δ¹³C values of 19-NA in a urine sample with that of endogenous reference compounds ("ERCs"), the origin of the 19-NA (endogenous or exogenous) in the sample can be identified. The essential function of GC/C/IRMS analysis is to make this comparison.

- 31. Article 3.2.1 of TD2021NA requires GC/C/IRMS analysis to be performed if the estimated concentration of 19-NA is between 2.5 and 15 ng/mL; but states that it *may* also be performed where the value is less 2.5 ng/mL and the testing laboratory considers it appropriate to conduct further testing in all the circumstances. The Montreal Laboratory considered there were suspicious circumstances that warranted performing GC/C/IRMS analysis. First, the concentration of 19-NA. 19-NA occurs endogenously although at low levels, rising to a maximum of 0.8 ng/mL in pregnant women. In men, the level is likely to be as low as 0.01ng/mL. Here, the level found in the A Sample was 1.9 ng/mL, i.e. much higher than the endogenous level. Second, the ratio of 19-NA to 19-NE. Whilst the concentration of 19-NE was below the instrument's linear range (and below reportable level), the ratio of 19-NA to 19-NE was >3, which was also flagged as suspicious. The Montreal Laboratory therefore decided to conduct GC/C/IRMS analysis to confirm whether the NA-19 present was endogenous or exogenous and, second, a GC-MS analysis to confirm the identity and concentration of the target compounds.
- 32. Relying on Prof Naud and Dr Barber's First Report, paragraph 52 of the ITIA Brief describes the steps in the process for these confirmation procedures, in what we understand to be uncontroversial terms.

<u>Sample extraction and purification</u>: The first stages involve solid phase extraction, enzymatic hydrolysis of urinary glucuroconjugated steroids and liquid-liquid extraction are performed on the sample, followed by extensive High Performance Liquid Chromatography ("HPLC"). These steps extract the relevant compounds, and then remove any substances which might distort the measurement of carbon isotopes. HPLC produces chromatograms with peaks which correspond with compounds eluting at known retention times, the corresponding fraction being collected for further processing. These HPLC chromatograms are only used as a step in the purification process and are not relied on for reporting purposes. The Montreal Laboratory then performs a second HPLC "clean up" for the fractions containing the target compounds, here 19-NA and 19-NE.

<u>GC/C/IRMS analysis</u>: The purified fractions containing the relevant analytes (i.e. 19-NA as target compound, and the ERCs) are injected into the GC/C/IRMS which measures their δ^{13} C values. The δ^{13} C value for the 19-NA is measured against the values for the ERCs, as the ERCs are not affected by the ingestion of exogenous 19-NA. This identifies

the origin of the 19-NA, which is further verified by comparison with positive and negative quality control samples ("**PQC**" and "**NQC**" respectively; and, collectively, "**controls**").

GC-MS "quality control" analysis: Finally, the compounds of interest are analysed using GC-MS in full scan mode, which identifies compounds based on their unique molecular fragmentation patterns and retention times, allowing for precise confirmation of the compound's identity. This ensures that the measured δ^{13} C value corresponds exclusively to the relevant compound (in this case, 19-NA) and that no co-eluting substances are present that might compromise the carbon isotope ratio measurement.

- 33. This confirmatory analysis of the A Sample concluded that it contained about 1.8 ng/mL of 19-NA, and the difference in stable isotope signatures between 19-NA and the two ERCs, at values of 7.0‰ and 7.8‰, was higher than the 3‰ criterion in TD2021NA for reporting an AAF on the basis that the 19-NA identified had an exogenous origin. In relation to 19-NE, it confirmed presence but the signal for the analyte fell below the linear measurement of the instrument even with the maximum validated injection volume. Consequently, there was no reportable AAF in respect of 19-NE.
- 34. The analysis of the B Sample on 11 February 2025 effectively replicated these results.
- 35. These results and consequent 19-NA AAF are the foundation of the Charge now brought against the Respondent.

V. Breach: The Defence - Introduction

36. The Respondent's case against there being any breach is based on the procedure adopted by the Montreal Laboratory which, it is submitted, was inherently defective. The case is based on the proposition that the analysis of the Sample involved departures from the ISL notably, and most directly, that the PQC and NQC on the one hand, and the Sample on the other, were subject to different processes, in that the fractions of the target compound and ERCs in the former were combined whilst in the latter they were kept separate so that, fatal to the validity and reliability of the analytical results and AAF, there were no effective controls. We deal with these alleged departures in turn below (paragraph

- 43 and following); but, before we do, we can usefully address certain preliminary matters in this context.
- 37. The Respondent submits that the alleged Montreal Laboratory errors looked at in the whole support the conclusion that the combining of fractions in the controls was not an isolated occurrence but rather reflected a general lack of analytical quality and rigour. In Sections 3.5-3.7 of the Respondent's Brief, there are set out matters which, it is submitted, are important context for that contention.
- 38. For example, it is suggested that the evidence of Prof Naud and Dr Barber should not be treated as expert in that it lacks independence: the Montreal Laboratory conducted the analysis that the Respondent challenges, and so their evidence is "inherently self-serving" (paragraph 43). Furthermore, Dr Nair is from another WADA-accredited laboratory, and therefore it is said that he too lacks independence because he will be anxious not to "undermine the credibility of the system" (paragraph 45). Yet further, it is submitted that both the Montreal Laboratory witnesses and Dr Nair exaggerated their experience in GC/C/IRMS analysis by giving figures for the analyses they have each conducted which include non-WADA referrals in what should be regarded as a "deliberate attempt to mislead this Tribunal" (paragraph 55).
- 39. We stress that, before us, it was not contended that any of these matters amounted to a departure from the requirements of the ISL, or otherwise in themselves undermined the reliability of the results of the Sample analysis. They were only put forward as background which, it was said, informed the grounds in fact relied on. However, we do not consider that these submissions have any significant weight in the overall context of these proceedings. We understand that Prof Naud and Dr Barber are from the Montreal Laboratory whose analysis is being challenged. However, as well as Dr Barber being in charge of the analysis in this case, they are both leaders in this field and we found their explanation of their processes to be helpful and credible. Insofar as they expressed an opinion, their views, supported by Dr Nair (whose independence and impartiality we consider to be unimpeachable), were carefully and thoughtfully put and clearly explained. All WADA-accredited laboratory personnel are subject to a strict code of ethics, and paragraph 4.0 of Annex A Code of Ethics for Laboratories and ABP Laboratories of the World Anti-Doping Code: International Standard for Laboratories (2021) provides that "if

- a staff member of a WADA-accredited laboratory is requested to provide evidence in antidoping proceedings, they are expected to provide independent, scientifically valid expert testimony." Their evidence is clearly admissible; and, in assessing it, we can and will take fully into account their position within the Montreal Laboratory or, in Dr Nair's case, another WADA-accredited laboratory. The fact that some of the GC/C/IRMS analyses they have performed, although identical in form, have not been for WADA does not in our view in any way undermine their credentials and/or credibility.
- 40. For the sake of completeness, we should say that, insofar as there was any suggestion made on behalf of the ITIA that the Respondent's case and/or Dr Podolskiy's evidence was in some way undermined by any association with Dr Grigor Rodchenkov, we do not consider that has any force in the context of this case. We accept both that Dr Podolskiy and Dr Strahm are also expert in this field, and gave their evidence objectively and to the best of their ability for the assistance of the Independent Tribunal.
- 41. The Respondent also relies on his inability to travel to Montreal within the time frame specified by the Montreal Laboratory to enable him to be present for the opening and analysis of the B sample. It is again made clear (paragraph 40 of the Respondent's Brief) that this is not put forward as a ground relied on for disputing the B Sample results, but only by way of explanation that, as he was not physically present, he could not raise matters then and there which might have been addressed immediately. However, the Respondent is clearly right not to suggest that his absence from the B Sample opening/analysis in any way undermines the B Sample results; he was given more than proper notice of the B Sample opening/analysis, and the Montreal Laboratory was prepared to delay matters to enable him to be represented in the way he would wish; the B Sample opening was witnessed by an independent person appointed by the Laboratory and the Respondent and his representatives were enabled to witness it by video link; as he appeared to appreciate at the time, it was impractical for him to be present by video link throughout the entire three (3) days of analysis; and, in any event, the ITIA does not suggest that the Respondent's absence (or the delay in raising matters he now raises) should be held against him in any way. So far as the issues before us, the Respondent's physical absence from the B Sample opening/analysis is irrelevant.
- 42. We therefore now turn to the alleged departures from the ISL.

VI. Breach: The Defence - The Alleged Deficiencies/Departures from the ISL

- 43. The Respondent relied on five (5) alleged deficiencies or errors in the process adopted by the Montreal Laboratory when compared with the requirements of the ISL.
- A. Non-matching Preparation Sample/Controls
- 44. Article 5.3.6.2 of the ISL provides that:

"All batches undergoing a Confirmation Procedure shall include appropriate negative and positive quality controls prepared in the matrix of analysis."

Similarly, Article 3.2.3 of TN2021NA requires each sequence of analysis to include an NQC and a PQC; and for the same sample aliquots subjected to GC/C/IRMS analysis to be analysed by GM-MS under similar chromatic conditions.

45. Further, a Comment to Article 3.1 of TD2021NA states:

"The NQC and PQC shall be subjected to the same sample preparation procedure as the Sample Aliquot."

- 46. As the primary defence to the Charge which was the almost exclusive focus at the oral hearing it was submitted on behalf of the Respondent that the NQC and PQC controls in the analysis performed here were subjected to a different preparation procedure from that applied to the Sample, because the fractions of the target compounds (19-NA and 19-NE) and some of the ERCs (pregnanediol and 5β-androstane-3α, 17β-diol ("5b-Adiol")) were combined for the controls but not for the Sample. It is submitted that this "rendered the controls invalid for assessing the reliability of the analysis and deprived the confirmation procedure of the required quality assurance" (paragraph 66 of Respondent's Brief).
- 47. For this submission, reliance was initially placed on the evidence of Dr Podolskiy in his First Report, notably the following (at page 4):

"Positive and negative control samples were fractionated using a different collection method compared to the tested sample. Since fractionation is an

integral part of the sample preparation procedure, this directly violates the explicit requirement outlined in WDA TD2021NA and WADA ISL."

- 48. However, as explained in the response of Prof Naud and Dr Barber in their Second Report, the Sample and the controls were collected and purified by an identical process under the HPLC purification method and under the same conditions. That is clear from the HPLC sequences of the laboratory documentation package ("LDP") for both Sample A (at pages 55 and 64) and Sample B (at pages 50 and 59). The fractions collected after sample collection and HPLC purification (the first purification for the ERCs, and the second purification for 19-NA and 19-NE) were combined for the controls only during the subsequent transfer into vials. The *collection method* of the Samples and controls was therefore identical.
- 49. In his Second Report, Dr Podolskiy accepted that the mixing of the control fractions occurred "after the final purification step" (page 9) and "immediately prior to analysis" (page 6). However, he contended that there was still a material difference between the processes as applied to the Sample and the controls:

"[...] [F]or both the [PQC and NQC], the 19-NE and 19-NA fractions were mixed immediately prior to analysis. Consequently, if the 19-NE fraction contained any portion of 19-NA, it would be combined and homogenized into a single fraction. By contrast, for the analyzed sample, the fractions were not mixed, which raises the possibility that part of the 19-NA remained in the 19-NE fraction. However, that cannot be determined, as no IRMS or GC-MS data for the 19-NE fraction of analyzed sample was provided."

In other words, combining (i) the 19-NA and 19-NE fractions and (ii) the ERC pregnanediol and 5b-Adiol fractions after the sample preparation stage and before injection and GC/C/IRMS analysis risked "isotopic fractionation", i.e. the alteration/distortion of the measured carbon isotope ratios compared with the true values of the compounds in vivo.

50. However, as helpfully described by Dr Nair in his Second Report and his oral evidence, the fraction collection window for 19-NE as set out in the LDP is between 14.6 and 15.5 minutes, and the window for 19-NA is between 16.8 and 17.7 minutes. Prof Naud and Dr Barber explained that each fraction is from a time segment collected after they pass

through the HPLC-UV detector, each time segment spanning the entire peak of interest with a "guard band" of 0.2 minutes before peak onset and after the analyte peak returns to baseline to ensure that no portion of the peak is "cut" which may cause isotopic fractionation. Allowing a grace period of 0.2 minutes after the 19-NE collection window, and 0.2 minutes before the 19-NA collection window, there is a gap of 0.8 minutes (48 seconds) in which nothing is collected. If some part of the 19-NA fell outside its designation window, then (in Dr Nair's words) it would therefore "certainly not have been rescued in the 19-NE fraction": it would have been sent to waste. In his Second Report, Dr Nair says that isotopic fractionation being undetected as a result of combining the 19-NA and 19-NE fractions in the PQC after the second HPLC purification is "impossible" owing to the large gap between their respective collection windows. In their Second Report, Prof Naud and Dr Barber equally conclude that: "The hypothesis that fractionation occurred because part of the 19-NA peak was incorrectly collected and transferred to the 19-NE fraction can be ruled out".

- 51. Based on this evidence, we accept that there is thus no plausible mechanism by which isotopic fractionation was caused by mixing 19-NA and 19-NE fractions prior to IRMS analysis. As a matter of simple mechanics alone, the chance of the measured isotope value of 19-NA being contaminated by 19-NE (or vice versa) in the controls in which the respective fractions had been mixed is nil or at least so slim that it can be discounted for practical purposes. Combining the 19-NA and 19-NE fractions after the collection and purification process had been completed could therefore have no bearing on the measured isotope value of either, and so could not result in isotopic fractionation or any distortion of the measured carbon isotope ratios.
- 52. Further, Prof Naud and Dr Barber prepared a figure in which the IRMS chromatograms for the 19-NA fraction from the Sample, the 19-NE fraction from the Sample and the combined 19-NA and 19-NE fraction from the controls were overlain. That shows a Sample 19-NE fraction flat line under the Sample 19-NA fraction arch (which confirms that there was no 19-NA contamination in the Sample 19-NE fraction); and, equally, a Sample 19-NA fraction flat line under the Sample 19-NE fraction arch (which confirms that there was no 19-NE contamination in the Sample 19-NA fraction). That confirms that no isotopic fractionation of the 19-NA and/or 19-NE fractions in fact occurred here.

- 53. That deals with the narrow concern raised by Dr Podolskiy: for the reasons we have given, there is no basis for it.
- 54. However, the analysis gives broader comfort.
 - (i) Prof Naud, Dr Barber and Dr Nair explained that the 19-NA and 19-NE fractions could be combined for the controls because, having been the subject of previous analyses, they had matrices of known composition so that it could be confidently said that combination of fractions would not result in any loss of integrity or cross-contamination. In our view, this is reflected in the Comment to Article 3.1 of TD2021NA, quoted above (paragraph 43): "The NQC and PQC shall be subjected to the same sample preparation procedure as the Sample Aliquot" (emphasis added), which appears to draw a distinction between (i) the HPLC sample extraction and purification phase and (ii) the GC/C/IRMS analysis phase for which the HPLC sample extraction and purification phase is preparation. Contrary to the position with the controls, the Sample had a matrix of unknown composition, such that combination risked introducing cross-contamination or other matrix-related complexity. We accept that evidence.
 - (ii) Dr Podolskiy and Dr Strahm make the point that, whilst in respect of the 19-NA and 19-NE fractions, the ITIA experts say that combining the sample fractions risks introducing some complexity which might distort the ultimate analytical result, some ERC sample fractions were combined. However, in their Second Report, Prof Naud and Dr Barber explain that, whilst the same precautionary step of not combining sample fractions was taken in relation to the ERC pregnanediol, it "is not critical for the secondary ERC (androsterone) as the concentration of androsterone was measured at 783 ng/mL which is 2 orders of magnitude greater than the concentration of 19-NA (1.7 ng/mL) and 1 order of magnitude greater than that of pregnanediol (86 ng/mL)". In his Second Report, Dr Nair confirms that, in respect of both ERC fractions that were combined, to "obtain values within the validated range of the instrument, they have to be reconstituted in large volumes which essentially dilutes out any potential interferences. At this point, they may be combined with another fraction with minimal risk of introducing complexity". We accept that

- explanation. In any event, the further checks considered below confirmed that, in this case, there was in fact here no isotopic fractionation caused by such combining.
- (iii) Dr Nair (in both his First and Second Reports) finds that the identity of the compounds collected by the HPLC process conclusively confirmed by the GC-MS analysis which compared the 19-NA and ERCs in the Sample were the same as known reference material. In their Second Report, Prof Naud and Dr Barber explain that, during each HPLC sequence, a mixture of reference materials is injected and fractions collected using the same collection windows as the Sample, the two controls and blank urine containing no 19-NA or 19-NE. The HPLC reference mixture used in the HPLC purification process is for the express purpose of determining the boundaries of the HPLC collection windows and ensuring those windows remain valid, those windows having been well established during the (validated) method evaluation. The δ^{13} C signatures measured during the analysis sequence are compared with known values. If the relevant sample had been incompletely collected, this would also be true for the controls as they were collected using the identical method. In the procedure here, all δ^{13} C signatures for the reported compounds in the Respondent's Sample and controls were within expected limits and, for the controls, were within the range of the quality control charts – which, Prof Naud and Dr Barber say in their Second Report (and we accept), is alone sufficient to validate the choice of collection windows.
- (iv) The procedure adopted by the Montreal Laboratory included an additional verification step over and above those required by the ISL. As described by Prof Naud and Dr Barber in their Second Report, under the heading "HPLC collection windows":

"The GC-C-IRMS analysis sequence also includes an injection of 19-NA and 19-NE which was not subject to the sample preparation (STD-IRMS-N presented on pages 82 and 83 of the document packages for [the B Sample]). The 19-NA in the positive control, reference mixture and the STD-IRMS-N originate from the same reference material. The critical point here, is that the δ^{13} C values obtained for 19-NA in the STD-IRMS-N, the [controls] and the HPLC reference mixture all generated comparable results, with each one being included during the analysis in

order to rule out any possible fractionation effects at different points in the procedure."

In their oral evidence, Prof Naud, Dr Barber and Dr Nair confirmed that this conclusively showed that the δ^{13} C value obtained for 19-NA in the Sample, and thus the reliability of the conclusions from the analysis, was not affected by any form of fractionation or contamination. We accept that evidence.

- (v) The analysis results obtained for the A Sample and B Sample those analyses taking place about two (2) months apart were essentially the same, indicating a stable and reproducible assay, which again supports the AAF.
- (vi) The Respondent's case is based on there being a systemic error in the procedure used by the Montreal Laboratory, namely in combining fractions on the controls. However, the uncontested evidence of Prof Naud and Dr Barber in their First Report was that the Confirmation Procedure applied in this case was "developed and fully validated several years ago. It is included [in] the scope of our ISO 17025:2025 accreditation." Paragraph 17 of the ITIA Reply confirms that the procedure developed by the Montreal Laboratory and used in this case "has been employed in numerous IRMS analyses conducted by [them]. This IRMS analysis method has been blind-audited and verified by WADA on multiple occasions [under WADA's External Quality Assessment Scheme to ensure it meets the ISL performance requirements], with no issues reported." Not only has there been such repeated validation (most recently, according to Prof Naud and Dr Barber's Second Report, in 2024), there was no evidence before us that the procedure used, in which fractions from the controls are combined (as in this case), has ever been questioned by WADA, any athlete or, indeed, anyone else before or since the Respondent in this case.
- 55. For the above reasons, we have concluded to something higher than our comfortable satisfaction that the analysis performed by the Montreal Laboratory was conducted in accordance with the ISL including TD2021NA. Contrary to the Respondent's initial contention, the relevant fractions for the Sample and the controls were collected and purified in identical manner. We are satisfied that, by mixing the control fractions as they

did, the Montreal Laboratories did not depart from the requirement in the Comment to Article 3.1 of TD2021NA: "The NQC and PQC shall be subjected to the same sample preparation procedure as the Sample Aliquot" (quoted at paragraph 45 above), in our view "preparation procedure" here referring to only the extraction, collection and purification steps described above (paragraph 32) before the GC/C/IRMS analysis stage. That part of the procedure was identical for the Sample and the controls. Nor do we consider that combining the control fractions as the Montreal Laboratory did, departed from the general requirements of Article 3.2.3 of TD2021NA (which requires, e.g., controls and similar chromatographic conditions for the GC/C/IRMS and GC-MS analyses) or Article 5.3.6.2 of the ISL (which requires, e.g., "appropriate" controls) (see paragraph 44 above), as the Respondent's 18 April 2025 Response to the Charge asserted.

- 56. The Respondent's attempt to rebut the presumption in Article 3.2.4 of the TADP (that WADA-accredited laboratories such as the Montreal Laboratory are presumed to have conducted sample analysis and custodial procedures in compliance with the ISL) thus fails at the first hurdle, i.e. in establishing on the balance of probabilities that there was a departure from the ISL.
- 57. However, even if we are wrong in that firm conclusion and the combining of the control fractions was such a departure, the Respondent has fallen very far short of surmounting the second hurdle, namely showing that that departure could reasonably have caused the AAF. For the reasons we have given, combining the relevant control fractions but not the sample fractions did not undermine the validity or reliability of the controls for their purposes in quality assurance. It is clear from the evidence that that departure from the ISL, if departure it was, had no significant effect indeed, could have had no significant effect on the results of the analysis or the conclusion that 19-NA of exogenous origin was present in the Sample and amounted to an AAF.
- 58. Having dealt with the Respondent's main ground of complaint indeed, the only ground upon which there was any focus by the time of the oral hearing we can deal with the other alleged departures from the ISL quite shortly.

B. The Treatment of the 19-NE Fraction

- 59. The Respondent submits that the reliability of the analysis results was directly undermined by the Montreal Laboratory's failure to provide GC/C/IRMS or GC-MS results for the 19-NE fraction of the Sample, which causes material uncertainty as to whether the 19-NA fraction was collected completely and without isotropic fractionation.
- 60. However, this adds nothing of substance to the first alleged departure (which the Independent Tribunal has rejected, above). The results for 19-NE were obtained (and have been made available to the Respondent); but fell short of the linear measurement of the instrument. Prof Naud and Dr Barber say in their Second Report, in evidence we accept, that that was expected, and not due to any incomplete collection of 19-NE as suggested by Dr Poldoskiy. Because the signal for 19-NE fell below the linear measurement of the instrument even with the maximum validated injection volume, they were not reportable; indeed, including the 19-NE results in the reporting in these circumstances was proscribed. For the reasons set out above, the analysis as a whole excluded the possibility of the 19-NA fraction being contaminated with 19-NE and any other form of isotropic fractionation.

C. <u>Disparity in Injection Volumes</u>

- 61. The Respondent submits that, by using different volumes, the GC/C/IRMS analysis breached Article 3.2.3 of TD2021NA and/or Article 5.3.6.2 of the ISL (see paragraph 44 above), and the accuracy and reliability of the analytical results were thereby compromised.
- 62. By the oral hearing, this was (in our view, rightly) not a ground actively pressed on behalf of the Respondent. As Prof Naud and Dr Barber emphasise in their Second Report, the purpose of the GC/C/IRMS analysis is to establish the origin of 19-NA as either endogenous or exogenous through a comparison of stable isotope signatures, which is not in any way dependent upon the concentration of the analyte. As they explain in paragraph four (4) of their First Report, the volume of each injection is determined and adjusted on the basis of concentration in each of the controls to ensure that the GC/C/IRMS peaks fall within the linear range of the instrument (the exception in this case being for 19-NE, in respect of which, even with the maximum validated injection volume, the signal obtained was below the linear range of the instrument). The volume of each

injection has no impact on the results of the analysis, which are concerned with proportions rather than absolute amounts. Differing volumes have no adverse impact on the accuracy and reliability of the results.

D. Low Signal to Noise Ratio in the HPLC Control Mixtures

63. The Respondent submits that the HPLC control mixture shows poor signal-to-noise ratio for the target compounds, increasing the likelihood of inaccurate fraction collection and thus distorted GC/C/IRMS results. This, it is said, is in breach of the requirement in paragraph 7.8.1.2 of ISO 17025.

64. However:

- (i) The Respondent does not identify any departure from the ISL (including TN2021NA).
- (ii) There was no departure from paragraph 7.8.1.2 of ISO 17025, which concerns only the form and not the substance of results ("The results shall be provided accurately, clearly, unambiguously and objectively […]").
- (iii) This ground is based upon the false premise that the HPLC stage is relevant to the substantive analysis and reporting of 19-NA in the Sample, as opposed to merely the purification of analytes.
- (iv) As described above, the controls produced isotopic values in line with their established values, and the purification of the relevant fractions was confirmed as being performed correctly. Isotopic fractionation was consequently "ruled out". The B Sample analysis in effect replicated that of the A Sample analysis, which indicated robustness of method.
- (v) The Montreal Laboratory has confirmed that the signal-to-noise ratio of the control mixture was evaluated as being adequate, i.e. as being greater than three (3) for each analyte of interest.
- 65. Consequently, there is no basis for the assertion that, in this respect, there was any departure from the ISL (or any other relevant standard); and, certainly, none that could have caused the Respondent's AAF.

- E. Deficiencies in the Documentation/Recorded Data
- 66. The Respondent relies on three (3) alleged further matters.
- 67. First, it is submitted that, in violation of the requirements of the ISL, the HPLC chromatograms failed to record detection wavelength, thereby making it impossible to interpret and verify the peaks.

68. However:

- (i) The detection wavelength (192.4 nm) was provided to the Respondent in Prof Naud and Dr Barber's First Report. That removes the source of the alleged complaint.
- In any event, the LDPs were prepared in accordance with WADA Technical (ii) Document TD2023LDOC, which prescribes the contents of an LDP. The specification does not require detection wavelengths, but only a statement to the effect that the retention times are stable and collection windows are set appropriately. Such a statement was given in this case, and was not challenged. Contrary to the suggestion of Dr Podolskiy (Second Report, page 3), paragraph 7.8.1.2 of ISO 17025 (which, as described above, concerns only the form of results, and then in only general terms) does not require detection wavelengths to be specified. Nor is such a specification required to ensure that the collection intervals have been correctly determined: that is ensured by other cross-checks (referred to above). Detection wavelengths are not required to be set out in the LDP, because the HPLC analysis is used only for the purpose of faction collection/purification and no spectral interpretation using wavelengths is required for the interpretation of results of the GC/C/IRMS analysis. In this case, the absence of isotopic fractionation from inadequate HPLC purification was assessed and confirmed during the analyses performed on the Sample and controls.
- 69. Second, it is submitted that, at page 48 of the B Sample LDP in the section dealing with Procedure C441, the Montreal Laboratory replaced the term "agitation" with "évaporation" without (Dr Podolskiy says at page 17 of his First Report) "any explanation, justification or authorisation" which "alteration constitutes a modification of the standard analytical

- procedure and therefore requires a clear explanation of how it may have affected the analytical results".
- 70. However, the explanation lies on the face of that same page of the LDP, where it indicates that the page relates to "2e purification HPLC" which was performed on the 19-NA and 19-NE fractions only (see paragraph 32 above). As Prof Naud and Dr Barber explain in their Second Report, the "agitation" step is part of the liquid-liquid extraction performed prior to the first HPLC purification: it plays no part in the second. The second HPLC purification begins, not with agitation, but an evaporation of the collected 19-NA and 19-NE fractions. Prof Naud and Dr Barber confirmed (in their Second Report) that this is in line with the protocol used for the second HPLC purification process. There was thus no change to the required procedure, nor indeed any deficiency in recording the procedures performed.
- 71. Third, in Table 3 in his First Report, Dr Podolskiy set out alleged errors in the LDP documentation which he says were not in conformity with the ISL requirements.
- 72. These allegations were dealt with to our satisfaction in paragraph 6 of Prof Naud and Dr Barber's First Report. In particular, empty fields were those for which data were optional, i.e. not required; the way in which a sample number was corrected in the LDP was fully and properly documented; and the missing fraction collection intervals are accounted for by the fact that the intervals for the entire HPLC sequence were the same. In any event, it is not arguable that any of these matters "could reasonably have caused the AAF".

VII. Breach: Conclusion

73. For those reasons, the Respondent has failed, by some margin, to show on the balance of probabilities that, in the analysis performed by the Montreal Laboratory on the A and B Samples, there was any departure from the ISL; and, by a substantial margin, that there was any departure which could reasonably have caused the AAF. Rather, we are comfortably satisfied that the analytical results of the Montreal Laboratory relied on by the

ITIA are valid and reliable; and that the ITIA has proved the violations of Articles 2.1 and 2.2 of the TADP and thus the Charge it brings against the Respondent.

VIII. Sanction

- 74. The Respondent submits that, if (as we have concluded) he is found to have committed an ADRV, then any violation was not intentional for the purposes of Article 10.2.
- 75. As Article 10.2.1 of the TADP makes clear, the burden of proof is upon the Respondent to show, on the balance of probabilities, that the ADRV was "not intentional". The Respondent has provided no evidence as to source, or how the Prohibited Substance entered his system. He relies on the following to prove lack of intent (Respondent's Brief, paragraph 89):
 - (i) The alternative explanation for the finding provided by the analytical irregularities raised in the defence.
 - (ii) The Respondent's lack of motive to use nandrolone or related substances.
 - (iii) The Respondent's age and sporting context which make intentional use implausible. It is submitted that it is highly improbable that a 19-year-old tennis player in the position of the Respondent would deliberately choose nandrolone a substance that is both outdated in doping practice, not well suited to tennis and easily detectable knowing that such use would not only jeopardise his sporting career but also expose him to criminal liability in Russia.

76. Article 10.2 of the TADP provides:

"The period of Ineligibility imposed for an Anti-Doping Rule Violation under Article 2.1 [or] Article 2.2 [...] that is the Player's [...] first doping offence will be as follows [...].

10.2.1 [...] [T]he period of Ineligibility will be four years:

- 10.2.1.1 where the Anti-Doping Rule Violation does not involve a Specified Substance [...], unless the Player [...] establishes that the Anti-Doping Rule Violation was not intentional. [...]
- 10.2.2 If Article 10.2.1 does not apply, then [...] the period of Ineligibility will be two years; [...]".
- 77. The Comment to Article 10.2.1.1 of the WADA Code (in identical terms to Article 10.2.1.1 of the TADP) states:

"While it is theoretically possible for an Athlete [...] to establish that an Anti-Doping Rule Violation was not intentional without showing how the Prohibited Substance entered one's system, it is highly unlikely that in a doping case under Article 2.1 an Athlete will be successful in proving that the Athlete acted unintentionally without establishing the source of the Prohibited Substance."

- 78. We were referred to consistent jurisprudence (largely from the Court of Arbitration for Sport ("CAS")) to the effect that, whilst not ruling out the possibility of proving a lack on intention without establishing the source, where an athlete cannot prove source, it will be rare for them to be able to prove a lack of intention. So, it has been said that proving the source is "a crucial, almost indispensable element for an athlete to disprove intent" (Jensen v World Rugby CAS 2023/A/9377 at [66]); and, without proving the source, "it leaves the narrowest of corridors through which such an athlete must pass to discharge the burden upon him" (Villaneuva v FINA CAS 2016/A/4534).
- 79. The cases have consistently stressed the need for focused evidence if a lack of intent is to be shown without proof of source:

"CAS has been clear that an athlete has a stringent requirement to offer persuasive evidence that the explanation he offers for an AAF is more likely than not to be correct, by providing specific, objective and persuasive evidence of his submissions" (Abdelrahman v WADA CAS 2017/A/5016 & 5036 at [125]).

As has been said, "[M]ere protestations of innocence that try to establish that it made no sense for him to use the Prohibited Substance [...] are not the evidence required to establish lack of intent and have been rejected by CAS panels time and time again" (Zielinski v POLADA CAS 2018/A/5584 at [142]). Similarly, whilst each case must be

considered on its own facts, it has been repeatedly held that the availability of "better" (i.e. more effective), cheaper and less easily detected substances; a previously "clean" record, with no proven use or allegations of Prohibited Substances; and the fact there are potential serious consequences (including prosecution) for an athlete to possess and/or use a particular substance in their country of residence are unlikely in themselves to be sufficient to prove a lack of intent.

- 80. Whilst we are not wholly unsympathetic towards the Respondent who made a heart-felt statement to us at the oral hearing, asserting his lack of use of any Prohibited Substance and stressing the devastating consequences that a four-year ban would have on his professional tennis career we are entirely unpersuaded that the evidence upon which he relies, looked at as a whole, gets close to proving a lack of intent on his part (which is the test we are required to apply under the TADP). We have concluded that there were no "analytical irregularities" in the procedure used in the analysis of the Sample and controls. Leaving aside the ITIA's non-acceptance that (e.g.) a tennis player would gain no benefit from the anabolic properties of 19-NA, that leaves the Respondent with little more than an assertion of lack of intent supported by a level of evidence which has consistently been found to be insufficient to discharge the burden of proof in these circumstances. We also note that the Respondent made no attempt to explain, let alone prove, any accidental ingestion of the Prohibited Substance.
- 81. We therefore find that the Respondent has failed to establish that the ADRV was not intentional, so that, under Article 10.2.1 of the TADP, the relevant period of Ineligibility is required to be four (4) years. The Independent Tribunal notes that it has no discretion under the TADP on this issue, given its findings above.

IX. Conclusion

82. For those reasons:

(i) The Respondent is found to have breached Articles 2.1 and 2.2 of the TADP for the presence and Use of 19-NA.

- (ii) The Respondent is sanctioned to a period of Ineligibility (as defined in Appendix 1 to the TADP) of four (4) years, commencing on the date of this Decision, with any period of Ineligibility or provisional suspension effectively served before entry into force of this Decision to be credited against the total period of Ineligibility to be served.
- (iii) All competitive results obtained by the Respondent from and including the date of the ADRV (i.e. 26 November 2024) are disqualified with all resulting Consequences (including forfeiture of medals, points and prizes).

X. Right of Appeal

83. This Decision may be appealed to the CAS, located at Palais de Beaulieu, Avenue des Bergières 10, CH-1004 Lausanne, Switzerland (procedures@tas-cas.org), in accordance with Article 13.2.1 TADP. Article 13.8.1.1 TADP sets the time limit to file an appeal to the CAS, which is 21 days from the date of receipt of this final Decision.

The Rt Hon Sir Gary Hickinbottom (Chair)
On behalf of the Independent Tribunal
London, UK
31 October 2025

1 Paternoster Lane, St Paul's London EC4M 7BQ resolve@sportresolutions.com 020 7036 1966

